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1. Introduction 
 

Optical solitons is an essential concept in today’s 
Internet dominated technological world [1-15]. These 
soliton molecules are visible in all walks of life on a 
daily basis. These solitons are needed for fiber-optic 
communication for long distances across the globe. 
Modern day technologies, such as twitter, face-book, 
electronic mail and others are only possible because of 
soliton transmission through optical fibers. This paper 
therefore studies the dynamics of solitons in cascaded 
system. It must be noted that in the past bright and dark 
soliton solutions to cascaded system was obtained by 
ansatz method [2, 7, 12].  

The governing equation for the propagation of 
solitons through optical fibers is the nonlinear 
Schrödinger’s equation (NLSE). Typically, this equation 
is studied with Kerr law nonlinearity so that NLSE is 
alternatively referred to as cubic Schrödinger’s equation. 
For cascaded system, it is the vector NLSE that is 
studied. This paper will address the coupled NLSE from 
its integration standpoint. There are three integration 
algorithms that are utilized for analyzing the vector 
NLSE. These are Q-function approach, Riccati equation 
method and G’/G-expansion scheme. The result will be 
singular soliton solution, topological soliton solution and 
finally, as a by-product, singular periodic solutions are 
also obtained. From the analysis several constraint 
conditions naturally emerge that are needed for the 
existence of the solitons and other solutions.  

 
 
 
 

2. Governing equation 
 
The dynamics of solitons in cascaded system is 

governed by coupled NLSE which in dimensionless form is 
given by 

 

02
111 =++ qrcqbqia xxt                                  (1) 

0)( 2
2

2
222 =+++ rrdqcrbria xxt                   (2) 

 
In (1) and (2), ),( txq  and ),( txr  represent complex-

valued wave profile. The independent variables are the x  
and the temporal variable t . Also, ja , jb  and jc  for 

2,1=j  are the coefficients of the temporal evolution of 
the solitons, group velocity dispersion and the cross-phase 
modulation of the two components. Then, 2d  is the self-
phase modulation of solitons.  

 
 
3. Soliton solutions  
 
In order to solve Eqs. (1) and (2), the following wave 

transformations are chosen [2] 
 

),(
1

1)(),( txieUtxq Φ= ξ                        (3)   
 

),(
2

2)(),( txieUtxr Φ= ξ                        (4) 
 
where )(ξlU   represent the shape of the pulse and  
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)( vtxB −=ξ                                          (5) 
 

llll txtx θωκ ++−=Φ ),( , 2,1=l      (6) 
 

In Eqs. (3) and (4), the functions ),( txlΦ  
represent phase components of the soliton. From the 
phase, lκ  are the soliton frequency lω  are the wave 

numbers and lθ  are the phase constants. Finally in Eq. 
(5), v  is the velocity of the soliton. Substituting Eqs. (3) 
and (4) into Eqs. (1) and (2) and then decomposing into 
real and imaginary parts leads to a pair of relations. The 
imaginary parts give 
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and    
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Next, equating the two velocities with each other 

leads to a constraint relation between the soliton 
parameters as 
 

221112 baba κκ =                               (9) 
  

which is a constraint condition for the solitons to exist. 
The real part equations are now written as 
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This pair of relations (10) and (11) will be now 

analyzed to retrieve soliton solutions in the following 
subsections. 
 

 
3.1 Q-function method 

 
By means of the Q function method, we can look 

for exact solutions of Eqs. (10) and (11) in the form of 
the following power series [8] 
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where  M , N  are positive integers, in most cases, that will 
be determined. Also, 0ξ  is an arbitrary constant. To 

determine the parameters M , N , we usually balance the 
linear terms of highest order in the resulting equation with 
the highest order nonlinear terms. 

One can see that the function )(ξQ  is solution of the 
equation 
 

2QQQ −=ξ                                 (13) 
 

Equation (13) allows us to obtain U ′  and U ′′  using 
polynomials of Q . The balancing procedure yield 

1== NM . Thus, to search for solution of Eqs. (10) and 
(11) we can use following relations 

 

)()( 101 ξξ QAAU +=                       (14) 
 

)()( 102 ξξ QBBU +=                       (15) 
 
Substituting (14) and (15) into Eqs. (10) and (11) and 

setting all the coefficients of powers )(ξQ  to be zero, then 
we recover a system of nonlinear algebraic equations which, 
when solved, gives 
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where B , 1κ  and 2κ  are arbitrary constants. The width 
of the solitons given by (16) and (17) introduces the 
constraint 

 
0)( 211221 <− dbcbcc , 011 <cb          (19) 

 
Finally, equating the two components of the soliton 

width B  gives the ratio of the soliton amplitudes as 
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which naturally introduces the restriction 

 
0)( 211221 >− dbcbcb                         (21) 

 
Substituting (16)-(18) into Eqs. (14) and (15) and 

inserting the result into the transformations (3) and (4), 
we get the exact solutions of Eqs. (1) and (2) as follows: 

Topological 1-soliton solutions: 
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Singular 1-soliton solutions: 
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3.2 Ricatti equation expansion approach 
 
In this section, the Ricatti equation expansion approach 

will be shown in detail to obtain the singular solutions, 
singular and dark soliton solutions to Eqs. (1) and (2). 
According to the homogeneous balance method, Eqs. (10) 
and (11) has the solutions in the form 

 
)()( 101 ξϕξ AAU +=                               (26) 

 
)()( 102 ξϕξ BBU +=                              (27) 

 
and )(ξϕ  satisfies the Riccati equation 
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where f  and l  are all non-zero real-valued constants that 
are independent on ξ . Eq. (28) is the well known Riccati 
equation, which admits the following explicit solutions: 
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when 0<fl .  
 

Substituting Eqs. (26)-(28) into Eqs. (10) and (11) leads 
to 
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Then, equating the coefficient of each power of 
)(ξϕ  to zero, we obtain a system of nonlinear algebraic 

equations which solve to  
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where B , 1κ , 2κ , l  and f  are arbitrary constants. 

The width of the solitons given by (35) and (36) 
introduces the constraint 

 

0)( 211221 <− dbcbcc , 011 <bc                (38) 
 

 

 
Finally, equating the two components of the soliton 

width B  gives the ratio of the soliton amplitudes as 
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which naturally poses the restriction as given by (21).  

Finally, using solutions (29)-(32) of Eq. (28), we 
obtain the the following exact solutions to Eqs. (1) and 
(2): 

 
 
 
 
 

Singular periodic solutions: 
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Topological 1-soliton solutions: 
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Singular 1-soliton solutions: 
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3.3 GG′ -expansion approach 
 
In this section, the GG′ -expansion method [5] 

will be shown in detail to obtain the singular solutions, 
singular and dark soliton solutions to Eqs.  (1) and (2).  
According to the homogeneous balance method, Eqs. 
(10) and (11) has the solutions in the form 
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where ( )ξG  satisfies the second-order linear ordinary 
diffierential equation 
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where λ  and µ  are real constants to be determined.  

Substituting Eqs. (48)-(50) into Eqs. (10) and (11) 
leads to 
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Then, equating the coefficient of each power of  GG′  

to zero, we obtain a system of nonlinear algebraic equations 
and by solving it, we get  
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where B , 1κ , 2κ , λ , µ  are arbitrary constants. 
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The width of the solitons given by (53) and (54) 
introduces the constraint relations 
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Finally, equating the two components of the soliton 
width B   gives the ratio of the soliton amplitudes as 
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which naturally poses the restriction given by (21).  

Substituting the solution set (53)-(55) into Eqs. (48) 
and (49), the solution formulae of Eqs. (10) and (11) can 
be written as 
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Substituting the general solutions of second order 

linear ODE into Eqs. (58) and (59) gives three types of 
traveling wave solutions. 

Case-I: When 042 >−=∆ µλ , we obtain the 
hyperbolic function traveling wave solution 
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where 1C  and 2C  are arbitrary constants. 

On the other hand, assuming 01 ≠C  and 02 =C , the 
topological 1-soliton solutions of Eqs. (1) and (2) can be 
written as: 
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Next, assuming  01 =C  and 02 ≠C ,  then we obtain 

singular 1-soliton solution for cascaded system (1) and (2) as 
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Case-II: When 042 <−=∆ µλ , we obtain the 

hyperbolic function traveling wave solution 
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where 1C  and 2C  are arbitrary constants. 

Also, with the assumption 01 ≠C  and 02 =C ,  
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and when 01 =C , 02 ≠C   the singular periodic solutions 
of Eqs. (1) and (2) will be 
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Case-III: When 042 =−=∆ µλ , we obtain 

plane wave solutions 
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where 1C  and 2C  are arbitrary constants. 
 
 

4. Conclusion 
 

This paper studied optical soliton solutions by the 
aid of three forms of integration tools. These are Q-
function approach, G’/G-expansion scheme and Riccati 
equation method. These algorithms lead to topological 
and singular soliton solutions to the governing coupled 
NLSE for cascaded system. It is interesting to observe 
that none of these integration techniques retrieved bright 
or dark soliton solutions. Instead, however, singular and 

topological soliton solutions are recovered. This shows the 
limitations of each of these three methods since bright 
solitons are the most important type of solitons that are 
handled on a daily basis in optical communication world. In 
future, the target will be to recover bright soliton solutions 
by resorting to additional integration schemes besides the 
ansatz approach [2, 7, 12]. The results of that research will 
be published later. 
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