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This paper obtains soliton solutions in cascaded system with Kerr law nonlinearity. There are three integration tools adopted
in this paper. These are Q-function approach, Riccati equation method and G'/G-expansion scheme. These lead to
topological and singular optical soliton solutions to the model. Additionally, there are singular periodic solutions that are also

revealed. Finally constraint conditions are given that needs to hold for these solitons to exist.
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1. Introduction

Optical solitons is an essential concept in today’s
Internet dominated technological world [1-15]. These
soliton molecules are visible in all walks of life on a
daily basis. These solitons are needed for fiber-optic
communication for long distances across the globe.
Modern day technologies, such as twitter, face-book,
electronic mail and others are only possible because of
soliton transmission through optical fibers. This paper
therefore studies the dynamics of solitons in cascaded
system. It must be noted that in the past bright and dark
soliton solutions to cascaded system was obtained by
ansatz method [2, 7, 12].

The governing equation for the propagation of
solitons through optical fibers is the nonlinear
Schrédinger’s equation (NLSE). Typically, this equation
is studied with Kerr law nonlinearity so that NLSE is
alternatively referred to as cubic Schrédinger’s equation.
For cascaded system, it is the vector NLSE that is
studied. This paper will address the coupled NLSE from
its integration standpoint. There are three integration
algorithms that are utilized for analyzing the vector
NLSE. These are Q-function approach, Riccati equation
method and G’/G-expansion scheme. The result will be
singular soliton solution, topological soliton solution and
finally, as a by-product, singular periodic solutions are
also obtained. From the analysis several constraint
conditions naturally emerge that are needed for the
existence of the solitons and other solutions.

2. Governing equation

The dynamics of solitons in cascaded system is
governed by coupled NLSE which in dimensionless form is
given by

ia,q, +b,0, +¢[r'g=0 ®
iazn+b2rxx+(cz|q|2+d2|r|2)r=0 @)
In (1) and (2), q(X,t) and r(x,t) represent complex-

valued wave profile. The independent variables are the X
and the temporal variable t . Also, a;, bj and C; for

j =1, 2 are the coefficients of the temporal evolution of
the solitons, group velocity dispersion and the cross-phase
modulation of the two components. Then, d2 is the self-
phase modulation of solitons.

3. Soliton solutions

In order to solve Egs. (1) and (2), the following wave
transformations are chosen [2]

q(x,t) =U,(&)e" @3)
r(xt) =U,(&)e ™Y 4)

where U, (&) represent the shape of the pulse and
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¢ =B(x-vi) )
O (x,t)=—xX+at+6,1=L2 (6)

In Egs. (3) and (4), the functions @, (X,t)
represent phase components of the soliton. From the
phase, k, are the soliton frequency @, are the wave

numbers and &, are the phase constants. Finally in Eq.

(5), V is the velocity of the soliton. Substituting Egs. (3)
and (4) into Egs. (1) and (2) and then decomposing into
real and imaginary parts leads to a pair of relations. The
imaginary parts give

Voo 2bx, @
al
and
Voo 2b,x, ®
a'2

Next, equating the two velocities with each other
leads to a constraint relation between the soliton
parameters as

a,k b = a,x,b, 9)

which is a constraint condition for the solitons to exist.
The real part equations are now written as

B2bU/ - (a,0, + bx?)U, +cU2U, =0 (10)

szzug - (a,0, + szzz)Uz

2 3 (11)
+c,U;U,+d,U, =0
This pair of relations (10) and (11) will be now
analyzed to retrieve soliton solutions in the following
subsections.

3.1 Q-function method

By means of the Q function method, we can look
for exact solutions of Egs. (10) and (11) in the form of
the following power series [8]

Ul(ég) :ZA|QI(§)

U.(6)=2 BQ'() (12)
1
Q(é):lie—,g,%

where M, N are positive integers, in most cases, that will
be determined. Also, 50 is an arbitrary constant. To
determine the parameters M , N, we usually balance the

linear terms of highest order in the resulting equation with
the highest order nonlinear terms.

One can see that the function Q(&) is solution of the
equation

Q.=Q-Q° (13)

Equation (13) allows us to obtain U’ and U" using
polynomials of Q . The balancing procedure vyield

M = N =1. Thus, to search for solution of Egs. (10) and
(11) we can use following relations

U,(&) =A +AQ(S) (14)

U,(5) =B, +BQ(S) (15)

Substituting (14) and (15) into Egs. (10) and (11) and
setting all the coefficients of powers Q(&) to be zero, then

we recover a system of nonlinear algebraic equations which,
when solved, gives

-7 (ble — b2cl) B

% 2cC,
(16)
A=+ 2(b1d2 _bzcl) B
ClCZ
B, =7 |- 2
2c,
an
g =+ | g
Cl
_ b (B® +2x])
. 2a,
(18)
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where B, x; and x, are arbitrary constants. The width

of the solitons given by (16) and (17) introduces the
constraint

c,c,(b,c, —bd,) <0, bc, <0 (19)

Finally, equating the two components of the soliton
width B gives the ratio of the soliton amplitudes as

A bazbd, g, (20)
BI b1C2

which naturally introduces the restriction
b,c,(b,c, —bd,)>0 (21)
Substituting (16)-(18) into Egs. (14) and (15) and
inserting the result into the transformations (3) and (4),

we get the exact solutions of Egs. (1) and (2) as follows:
Topological 1-soliton solutions:

q(X,t) -+ (bldz — bzcl) B
\{ 2¢c,C,
X tanh{E[x + %t} (22)
2 a

2.5,.2
i[—l{lx—%tﬂﬂj
&
xe !

by
2

1

X tanh{E (x + Mt]} (23)
2 a,

2 2
by (B +2x5 )t+492
2a,

r(x,t) =

—KpX

ol

Singular 1-soliton solutions:

(bldz — b2C1) B
2¢,C,

X coth{E (x + % t}} (24)
2 a

2 2
i[—r{lx—wwﬁlj
a
xe '

g(x,t) ==

r(x,t) =

X coth{E [x + 20,5, tj} (25)
2 a,

2 2
[Mw]
2a,
X e

3.2 Ricatti equation expansion approach

In this section, the Ricatti equation expansion approach
will be shown in detail to obtain the singular solutions,
singular and dark soliton solutions to Egs. (1) and (2).

According to the homogeneous balance method, Egs. (10)
and (11) has the solutions in the form

U.(8) = A + Ag(S) (26)
U, () =B, +Bp() @
and @(&) satisfies the Riccati equation

P'(&)=f +1p*(&) (28)

where f and | are all non-zero real-valued constants that

are independent on &. Eq. (28) is the well known Riccati
equation, which admits the following explicit solutions:

ol = Y16/ M12) ‘arl‘(ﬁ‘f) @)
p($) = —M (30)
when fl >0, and
p(&) =~ 1 tanlh (=12 (31)
(&) = —J‘_“C‘“r”‘_“ ) )
when fl <0.

Substituting Egs. (26)-(28) into Egs. (10) and (11) leads
to
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B%b,(2A, flp + 2A1°0%)
(o + blKlz)(AO +Ap) (33)
+,(By +B,0)? (A, + Ag) =0

B%b, (2B, flp + 2B,1°p%)

— (8,0, +byx;)(B, + B,p)
+C,(A + Ap)* (B, + B,p)
+d, (B, +B,p)° =0

(34)

Then, equating the coefficient of each power of
(&) to zero, we obtain a system of nonlinear algebraic
equations which solve to

=0, A=+ 35
A A s, (35)
B,=0,B =% —Z—bllB (36)

C1
__bl(ch—Zlef)
1 al
(37)
b, (k7 — 2B°If)
W, =——""—"—"="——"—""
a‘2

where B, «;, k,, | and f are arbitrary constants.

The width of the solitons given by (35) and (36)
introduces the constraint

c,c,(b,c, —bd,) <0, cb <0 (38)

Finally, equating the two components of the soliton
width B gives the ratio of the soliton amplitudes as

ﬁ — bZCl — ble (39)

Bl blCZ

which naturally poses the restriction as given by (21).
Finally, using solutions (29)-(32) of Eq. (28), we
obtain the the following exact solutions to Egs. (1) and

(2):

Singular periodic solutions:

2fl(b,d, =b,c)

q(x,t) ==+
C,C,
X tan{ﬁB(x + 221’(%]} (40)

2 2
[an b2
x € !

r(x,t)== /—ﬂB
C1

x tan{ﬁB[x + 20y, tJ} (41)

a,

2 on?
i[—xzx—ibz(lrz 28 ")t+ezj
a

xXe

a0 = F 2fl(bd, ~byc)
ClCZ

xcot{\/ﬁB(x+2b1K1tj} (42)

a4

i(-;«lx-ibl("lz’mz”)tafel]
xe o

2flb,
Cl

X cot{\/ﬁ B[x + by, tJ} (43)

a,

r(x,t)==+_|—

2 oR2
i[—xzx—ibz(xz aZB It )t+62]
x e z

Topological 1-soliton solutions:

2fl(bd, =b,c,)
Cch

xtanh{\/—_ﬂB(XJr—ZblKl tJ} )

Ch

q(x,t) = 1\/—

2 _5R2
[wtg]
&

X e
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r(x,t)=% /—2 fib, B
Cl

x tanh{q/— fl B(x + 2‘;2—’(2@} (45)

2

2 2
(o280, )
a

X e
Singular 1-soliton solutions:

A1) = 1\/_ 2fl(bd, —byc,) 5
Clc2

X coth{,/— fl B(x + %t]} (46)

&

R
X e &

21lb,

C

X coth{wl— fl B(x + %tj} (47)

B

r(x,t)=%

a,

2 2
o200,
a

xXe

3.3 G'/G -expansion approach

In this section, the G'/G -expansion method [5]

will be shown in detail to obtain the singular solutions,
singular and dark soliton solutions to Egs. (1) and (2).
According to the homogeneous balance method, Egs.
(10) and (11) has the solutions in the form

U, (&) = A + A{%} ®)
Uz(é) = Bo + B{%} (49)

where G(f) satisfies the second-order linear ordinary
diffierential equation

G'(5) +AG'(8) + 1G(5) =0 (50)

where A and u are real constants to be determined.
Substituting Egs. (48)-(50) into Egs. (10) and (11)
leads to

Gy G\
ZA{—) +3A1/1(—)
B2, G G
+2Au+ Aﬁ)[%) b

- (a0, + blicf){ﬁb + A{%)} (51)
G\ G’
{B ' Bl(aj} {AO ' Al(aj}
251(9'] +3B¢[EJ
B%D, G G
+(2Bu+ leiz)(%j + AuB,)
— (2,0, + szzz){Bo + Bl(%)} (52)
G\ G’
“’2{’*’*’*(6}} {B“B{EJ}
+ dz{B0 + B{Ej} =0
G

Then, equating the coefficient of each power of G'/G

0

to zero, we obtain a system of nonlinear algebraic equations
and by solving it, we get

2c,C
142 (53)
p =+ |200: =bC) g
ClCZ
B, =+ |- 2B
2c,
(54)
B+ | 22p
Cl
_ b2+ B (X ~4p)
: 2a, 65
__b(2k} +BX(# —4u)
2 2a,

where B, x;, x,, A, u are arbitrary constants.
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The width of the solitons given by (53) and (54) (/12 —4u)b
introduces the constraint relations r(x,t)==+ |- #B
2c,
c,c,(b,c,—bd,) <0, bc, <0 (56)
1¥2\~2~1 12 1¥1 - \/m 2b2]('2
, . . C, sinh B| x + t
Finally, equating the two components of the soliton 2 a,
width B gives the ratio of the soliton amplitudes as
A -4 2b,x
A b.c. —b.d +C, cosh N2 T2 gl x4 202K
R IS o o e o Y [ I (57) 2 a,
B, bc, X - (61)
JA2 —4u 2b,x,
which naturally poses the restriction given by (21). C, COSh[ 2 B[X + a t
Substituting the solution set (53)-(55) into Egs. (48) 2
and (49), the solution formulae of Egs. (10) and (11) can 3
be written as +C, sinh VA —4u Bl x+ 2b, x, t
2 a,
_ 2(b1dz — bZC].) A G’(é:) 58
U, (&) ==, cc, Byo (&) (58) i[ﬂ(zxsz(2K§+ZB:(12*4#))H02]
x e 2

Uz(f)zi _2_blB{i+%} (59)
Ve 12 6)
Substituting the general solutions of second order

linear ODE into Egs. (58) and (59) gives three types of
traveling wave solutions.

Case-l: When A = A° —4u>0, we obtain the
hyperbolic function traveling wave solution

q00t) =+ \/w —4u)(bd, ~b,c,) o

2c,C,

2 —
C, sinh[M’ZA'/l B(x + ZblKltH
al

2 [—
+C, cosh(w B(x + ZblKlth
2 a
2 J—
[w/i 4 B(X L 2, tﬂ
2 a,

(60)

C, cosh

+C, sinh

where C, and C, are arbitrary constants.

On the other hand, assuming C, #0 and C, =0, the
topological 1-soliton solutions of Egs. (1) and (2) can be

written as:

— bzcl) B

q(X,t) — i\/(ﬂz _4ﬂ)(b1d2

2cc,
x tanh

o

2, n2(,2_
by (252 +B2 (4 4ﬂbt+glj

i(—rclx— 2a
x e '

X + 265 tB
al

2
r(x,t) =+ [——(/1 _4ﬂ)blB
2c,

x tanh

=t

2 p2(,2_
by (2x2+B2(# 4,ubt+gzj

i[—sz— ’a
x e 2

N 2b,x, i

j] (63)
a2

(62)

o

2 p2(2_
by (2x2+B2 (4 4ﬂbt+01]

|(—K1><— 2a
x e !

X + 20k tj}
al

Next, assuming C, =0 and C, #0, then we obtain

singular 1-soliton solution for cascaded system (1) and (2) as
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2 2
q00t) -+ J (£ ~4u)(bd, ~be) R IRy 5T
2c,C, 2¢c,
[72 _ [1,,_ 22
x coth /1—4ﬂB x+%t (64) —C, sin MB x+2b2K2t
2 a, 2 a,
L YCISE ) W YT
x e ( 2a ] +C2 Cos[’uzﬂ B[X-ﬁ-ZbZKZIJ
2
X (67)
} A —4u)b A — )2
I‘(X,t):i —(Z—y)lB Cl CcoS MB X+Mt
C 2 a,
A —du 2b,x, _ 2
x coth TB(X+a—t (65) +CZ sin 4/“ A Bl x + 2b2K2 t
2 2 a,
i[_sz_bz(ZKZZJr?: /12,4/4))t+92] ) b2(2K22+BZV.2*4,U!)t .
x @ 7 5 el(—xzx— 23, + 2]
. _ 2 .
Cas_?-ll. When A _,l 4,u<01 we obtain the — here C, and C, are arbitrary constants.
hyperbolic function traveling wave solution
Also, with the assumption C, #0 and C, =0,
(Au— lz)(bldz —b,c,)
x,)==% B
a0t \/ 2c,Cc, q(x,t) = i\/ (4u—2°)(bd, —b,c,) B
2c.c,
[ ABu -2
- C, sin 'UB[XJFZblKltJ /4’u_/12 2b.x
2 a x tan B B| x + —t (68)
a1

_ 12
+C, cos[“d'ﬂzﬂL B(

X+ 205 tJJ
a'1

X e

2ay

2 n2(s2_
i(fklebl(zxﬁs 7 4/4)“01]

X \/72 (66)
4u—2 2b,x
C, cos Bl x+ 1t 2
1 [ ? ( 2, JJ )= |- G2
2c,
[ A=A 2b,x, [, 2
+C, sin 2 B(XJF a t «tan| VA=A gl 20K (69)
1 2 a,
.[_le_%;(ﬂzf‘w))twl] i[szxsz(zkgmzw_ztyDt%]
X e x @ 2a,

and when C, =0, C, #0 the singular periodic solutions
of Egs. (1) and (2) will be
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2
q00t) =+ J (4u—2°)(bd, ~b,e)) o
2¢,c,

_ 2
x cot VA=A B(x + %t] (70)
2 a
I(_le_bl(ZKIZJrBZ 42,4;1))“01]
% @ 23
_ 2
r(x,t)==+ (Bu—2)b; B
2c,

/ _ 12
#B(X_,_sz_lczt] (71)

2 p2(s2_
7K2X7b2(2KZ+B 7 4#))%}

{
x @ 2a,

Case-lll: When A=A —4u=0, we obtain
plane wave solutions

2(b1d2 — b2C1)
C,C,

q(x,t) ==+
BC,
C, +C2[x +2blK1tJ

al
i[—;clx—bl—’qur&l]
X € "

r(x,t)=+ /—z—bl
Cl

BC,
C + Cz(x +2b2K2tj

2

X

(72)

X (73)

2
i[—xzx—bzkz t+62J
a
X € :

where C, and C, are arbitrary constants.

4. Conclusion

This paper studied optical soliton solutions by the
aid of three forms of integration tools. These are Q-
function approach, G’/G-expansion scheme and Riccati
equation method. These algorithms lead to topological
and singular soliton solutions to the governing coupled
NLSE for cascaded system. It is interesting to observe
that none of these integration techniques retrieved bright
or dark soliton solutions. Instead, however, singular and

topological soliton solutions are recovered. This shows the
limitations of each of these three methods since bright
solitons are the most important type of solitons that are
handled on a daily basis in optical communication world. In
future, the target will be to recover bright soliton solutions
by resorting to additional integration schemes besides the
ansatz approach [2, 7, 12]. The results of that research will
be published later.

Acknowledgments

The work was supported by the Qatar National Research
Fund (QNRF) under grant No. NPRP 6-021-1-005.

References

[1] M. Bache, F. W. Wise, Phys. Rev. A
81, 053815 (2010).
[2] A. H. Bhrawy, A. A. Alshaery, E. M. Hilal,
Z. Jovanoski, A. Biswas, Optik 125, 6162 (2014).
[3] A. Biswas, K. Khan, A. Rahman, A. Yildirim, T. Hayat,
O. M. Aldossary, J. Optoelectron. Adv. Mat.
14,571 (2012).
[4] A. Biswas, A.H. Bhrawy, A.A. Alshaeryd, E.M. Hilal,
Optik 125, 6162 (2014).
[5] G. Ebadi, A. Biswas, Commun. Nonlinear Sci. Numer.
Simul. 16, 2377 (2011).
[6] L. Girgis, D. Milovic, S. Konar, A. Yildirim, H. Jafari,
A. Biswas, Rom. Rep. Phys. 64, 663 (2012).
[7] 3-V. Guzman, M. F. Mahmood, A. A. Alshaery,
E. M. Hilal, A. H. Bhrawy, A. Biswas, Submitted.
[8] N. A. Kudryashov, A. S. Zakharchenko, Appl. Math.
Lett. 32, 53 (2014).
[9] H. Leblond, H. Triki, D. Mihalache, Rom. Rep. Phys.
65, 925 (2013).
[10] D. Mihalache, Rom. J. Phys. 59, 295 (2014).
[11] A. F. Mohammed, C. H. Telk, S. P. Majumdar. J. Opt.
Commun. 21, 165 (2000).
[12] A. K. Sarma, A. Biswas, Opt. Appl. 41, 205 (2014).
[13] M. Savescu, A. H. Bhrawy, E. M. Hilal, A. A. Alshaery,
A. Biswas, Rom. J. Phys. 59, 582 (2014).
[14] Q. Zhou, Optik 125, 3142 (2014).
[15] Q. Zhou, Q. Zhu, A. H. Bhrawy, L. Moraru, A. Biswas.
Optoelectron. Adv. Mat. 8, 800 (2014).

“Corresponding author: biswas.anjan@gmail.com



